Assignment 2

Hand in no. 1 and 2 by September 19, 2023.

1 Let $C_{2 \pi}^{\infty}$ be the class of all smooth 2π-periodic, complex-valued functions and \mathcal{C}^{∞} the class of all complex bisequences satisfying $c_{n}=\circ\left(n^{-k}\right)$ as $n \rightarrow \pm \infty$ for every k. Show that the Fourier transform $f \mapsto \hat{f}$ is bijective from $C_{2 \pi}^{\infty}$ to \mathcal{C}^{∞}. Hint: You need to apply those theorems on uniform convergence in MATH2060.
2. Propose a definition for $\sqrt{d / d x}$. This operator should be a linear map which maps $C_{2 \pi}^{\infty}$ to itself satisfying

$$
\sqrt{\frac{d}{d x}} \sqrt{\frac{d}{d x}} f=\frac{d}{d x} f
$$

for all smooth, 2π-periodic f.
3 . Let f be a continuous, 2π-periodic function and its primitive function be given by

$$
F(x)=\int_{0}^{x} f(x) d x .
$$

Show that F is 2π-periodic if and only if f has zero mean. In this case,

$$
\hat{F}(n)=\frac{1}{i n} \hat{f}(n), \quad \forall n \neq 0 .
$$

4. Let \mathcal{C}^{\prime} be the subspace of \mathcal{C} consisting of all bisequences $\left\{c_{n}\right\}$ satisfying $\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}<\infty$.
(a) For $f \in R[-\pi, \pi]$, show that

$$
2 \pi \sum_{-\infty}^{\infty}\left|c_{n}\right|^{2} \leq \int_{-\pi}^{\pi}|f|^{2} .
$$

(b) Deduce from (a) that the Fourier transform $f \mapsto \hat{f}(n)$ maps $R_{2 \pi}$ into \mathcal{C}^{\prime}.
(c) Explain why the trigonometric series

$$
\sum_{n=1}^{\infty} \frac{\cos n x}{n^{\alpha}}, \quad \alpha \in(0,1 / 2],
$$

is not the Fourier series of any function in $R_{2 \pi}$.

